Proteins and other biological molecules are, in essence, chemical compounds with specific properties that are determined by the nature of their atoms and the way they are connected and organized in the 3D space.

These properties are defined, in physico-chemical terms, as potentials, typically expressed with complex equations and/or numerical values. One of the aims of our effort, is to convey the significance of these properties in a visual way. Professional programs can calculate, for example, the electrostatic potential of a surface, or its hydrophobicity, and report it on the surface using a conventional code, typically a colour scale.

We present here some images obtained while studying different ways to render (i.e. to give visual properties to surfaces) applied to a form created with a random process or to a shape representing a branched complex sugar typically found on glycoproteins.

Please contact us if you wish to obtain high resolution images

Actin-Myosin bundle complex
HIV virions approaching a white blood cell
Red blood cell surface, with flows of K ions
Red blood cell panorama, with TSH receptor
HIV spike binding to CD4 receptor
White blood cell emitting HIV particles
Cell surface Cell surface.
The surface of a red blood cell shows a few proteins that are abundant on this type of membrane: receptors, transporters and some channels. These proteins are in constant motion in the ‘fluid mosaic’ that constitute the plasma membrane.
VeinCurveRed blood cells in a vessel
The typical biconcave shape of red blood cells is shown in this image, created during production of our short movie ‘TSH Receptor on red Blood Cells
ReceptorCloseUp0522 TSH Receptor
The Thyrotropin Receptor is seen in a close up view, with its binding pocket ready to accommodate the thyroid stimulating hormone.
Lipid Raft Lipid Raft

Membrane proteins embedded in the cellular membrane, and around on a lipid raft.

This image wins the Art of Science Image Contest 2012 at the Biophysical Society 56th Annual Meeting in San Diego.

Calmodulin – MLCK interaction Calmodulin – MLCK interaction

In this image the protein-protein interaction is visible mainly through EP. While in movies it is possible to exploit the motion of particles, in static images the polarity is transmitted by the comet rendering of particles lines that appear as moving towards the negative pole.

Lipid Raft Lipid Raft

Membrane proteins embedded in the cellular membrane, and around on a lipid raft

Contractile Ring Contractile Ring

Non-muscle myosin II moves along actin filaments, constricting the cell membrane to form a cleavage furrow, during the Cytokinesis.

Cellular texture Cellular texture

Seamless texture of a cell layer.
The original image, was taken with a phase contrast optical
microscope. The cells are human fibroblasts grown to confluency.

Calmodulin Calmodulin

Calmodulin (pdb 1cfc), pictured with our latest system: the boundary
of the protein is the Solvent Accessible Surface area, calculated
with PyMOL and imported as a mesh in Blender. The texture is an
elaboration of the Molecular Lipophilic Potential, showing
hydrophobic areas as white, smooth and shiny patches, and hydrophilic
ones as darker, rough and dull.

Velluto (Velvet) Velluto (Velvet)

A simple soft looking material

Gomma (Rubber) Gomma (Rubber)

This complex ‘shader’ includes two overlapping 3D displacements and a graded luminosity (incandescence).
The form is the terminal end of a branched oligosaccharide. Atoms were randomly assigned grades of grey, and the molecule is depicted as in a street environment

Zucchero (Sugar) Zucchero (Sugar)

The form is a random blob, randomly coloured. The surface includes a ‘shiny displacement’ that gives a rough crystallin impression, similar to sugar lumps.

Pongo (Plasticine) Pongo (Plasticine)

Don’t you feel like playing with it?

Sabbia (Sand) Sabbia (Sand)

Note the layer of ‘fog’ surrounding the surface

Cespuglio (Bush, the plant) Cespuglio (Bush, the plant)
Riccio (Hedgehog) Riccio (Hedgehog)


All the images licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License

Share on FacebookTweet about this on TwitterShare on Google+Share on LinkedInPin on Pinterest

© 2013

About | Links | Contacts | News Archive